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Introduction 

Widely and for several decades, detection limits (DLs) have been 

recognized as a figure of merit of vital importance and utilized in every discipline 

of analytical chemistry to ensure statistical reliability and practi cal suitability of 

analyses. A fundamental quantity underlying DLs is the standard deviation (SD) 

of response variables or measurements. First, this article introduces definitions 

and concepts of DLs and secondly, focuses on the externalization of DLs, i.e., how 

to obtain SD estimates in practice. Discussed are the advantages and 

disadvantages of methods for estimating SDs in instrumental analyses: the 

statistical approach with repeated experiments of real samples and an 

uncertainty theory, called FUMI theory (Function of Mutual Information) , which 

can dispense with repeated measurements.  

 

1.  Detection limits and decision limits 

DLs and decision limits are defined in ISO 11843-71) and JIS Z 8462-72). A 

DL is a target quantity of detection, but not a  criterion for judging whether or not 

a target material is detected in an analytical system. The presence of a material 

in a sample is judged by a decision limit.  

 

1.1 Necessity of decision limits 

 In general, as a concentration of a target material decreases, its signal 

becomes smaller and finally makes it difficult to distinguish its shape from 

fluctuations of noise. A DL measurement, yD, is often defined with an S/N 

(signal-to-noise ratio) as S/N = 3 for the sake of convenience. Let y be a 
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measurement or response, and x be a concentration (final quantity of analyses) . A 

DL measurement, yD, can be transformed into its corresponding DL concentration, 

xD, through a calibration function (y = f(x)) . If a measurement, y, is much more 

than yD, an analyst can say that a material at a concentration of xD is detected. 

However, the question now is not only the presence or absence of a material, but  

also a probability with which the material can be detected, when its measurement , 

y, is close to yD.  

 If analytes of the DL concentration, xD, called DL samples, are measured 

repeatedly, the probability of  an observable y (or estimable x) rising above the DL 

is equal to that of falling below the DL. As long as a decision is made by 

comparing y with yD or x with xD, the probability of detecting a DL material in DL 

samples is 50 %. In order to achieve a higher probability of detection, e.g.  95 %, 

we need to introduce another standard,  called a decision limit or critical value, yC,  

which is less than yD and xD. A new rule of detection is that if y<yC, a material of 

the concentration xD is not detected and if y≧yC, it is detected. The detection 

limit, yD (i.e. xD) is a target quantity for detection and the decision limit , yC, is a 

criterion for judging detection. 

  

 

 

Figure 1  A concept of limits of detection and decision 1,2）  
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 The right curve of Fig. 1 illustrates a normal distribution of 

measurements when DL samples at a concentration of xD are repeatedly measured. 

Its average is yD and corresponds to xD through a calibration function (xD = 

f1(yD)). The probability of a measurement, y, falling below yC is  (= 5 %). We can 

see that as a criterion for judging detection decreases from yD to yC (see the last 

section), the probability of detection increases from 50 to 95 %. However, a 

problem occurs that blank samples can result in a measurement more than yC. 

The left curve of Fig. 1 shows a distribution of blank measurements and the 

probability of a blank measurement exceeding yC is  (= 5 %).  

is referred to as the probability of an error of the first kind (false 

positive) and   the probability of an error of the second kind (false negative). In a 

normal distribution with zero mean and SD of , the probability of a variable 

being more than +1.65 or less than 1.65 is 5 %.  

As shown in Fig. 1, the limits of decision and detection are defined, 

respectively, as  

 

yC = 1.65y         (1) 

yD = 3.3y         (2) 

 

where y denotes the SD of a normal distribution of measurements. It is assumed 

here that the distribution of measurements of blank samples is the same as that 

of DL samples (homoscedastic assumption). Since the concentration of blank 

samples (= 0) is close to xD, the homoscedasticity is reasonable.  

Let α and β be both 5 %. We can safely say that with a risk of at most 5 %,  

 if y < yC or x < xC, the analyte of the concentration xD is not detected; 

 if y ≥ yC or x ≥ xC, the anaylte of the concentration xD is detected. 

The criterion, yC, and rules, < and ≥, are both essential for the concepts of 

detection limits. We should note that there is a possibility of detection,  even if a 

measurement is less than the detection limit  (see Fig. 1).  
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A target of DLs is usually a  sample of an unknown concentration. When 

its measurement, y, is obtained, discussion of its corresponding concentration is 

possible through a calibration function, but makes no sense from the viewpoints 

of DLs. The question now is which state an analytical system characterized by the  

measurement, y, belongs to, blank or DL (see the distributions of Fig. 1) . Other 

concentrations than a blank (basic state) or DL (reference state) are outside the 

purview of the definitions of DLs.   

The concepts of limits of decision and detection (eqs 1 and 2) are very 

simple and easy to understand. However, analysts have to replace the theoretical 

SD, y, (population SD) of eqs 1 and 2 with an estimate of y (sample SD) to use 

these definitions in practice. The next section takes this subject.  

 

2.  Estimation of SD 

 Two methods for evaluating the SD,y, of eqs 1 and 2 are described in this 

section.  

 

2.1 Repeated measurements 

  The simplest equation for SD estimation is  

         

       (3) 

         

where y i denotes the i-th measurement and y
－

 the average of n measurements. 

This SD estimate (eq 3) varies depending on a series of n experiments, though 

conducted under exactly the same experimental conditions. This scattering  of SD 

estimates can be assessed by a well-known statistical theory, called the 

chi-square distribution.  

 Figure 2 shows a dependence of scattering of SDs estimated by eq 3 on the 

number of repeated measurements, n. Hereinafter, n consecutive measurements 

are called a series of measurements, which leads to an SD estimate. The 95 % 

confidence intervals imply that among 100 SD estimates which result from 100 

series, 95 estimates fall between the upper and lower limits of the intervals and 5 

estimates are outside the limits. For example, if n = 6, the 95 % intervals range 
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from 0.4 to 1.6 around the true value (= 1), indicating  that 95 % of all the SD 

estimates scatter between ± 60 % of the true value. For ± 20 % SD scattering, 

more than 40 measurements are required (see Fig. 2).  

In case of 6 measurements (n = 6), due to  ± 60 % confidence intervals, an 

SD estimate can be half of a second estimate, though under the same 

experimental conditions. Then, an estimate of y varies from series to series 

accordingly, and so do the limits of detection and decision defined by eqs 1 and 2.  

The chi-square distribution shown in Fig. 2 points out a tradeoff between 

a small number of repeated experiments and high  statistical reliability of SD 

estimates. This is a mathematical rule without exceptions. Furthermore, the 

repetition of experiments with real samples is unfavorable from the scientific and 

economical viewpoints. An alternative is an S/N as described in subsection 1.1. 

Unfortunately, however, the S/N cannot tell the probabilities of α and β 

theoretically in most cases. That is, the numerical judgement of detection, as 

defined in eqs 1 and 2, is impossible with S/Ns.  

 

 

 

Figure 2  Dependence of 95 % confidence intervals of SD estimates on the 

number of repeated measurements (n) 

 

denotes the 95 % confidence intervals.  and  denote the values of  with 

probabilities, 0.025 and 0.975, respectively.  
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2.2 FUMI theory 

 The FUMI theory can compensate for the theoretical shortcoming of S/Ns 

mentioned in the last subsection. The FUMI theory is based on a probabilistic 

model and can provide accurate SD estimates , σ(k), without repeated 

measurements of real samples. However, its applicability is restricted within 

some fields of analytical chemistry because of its strict foundations of 

mathematics. On the other hand, the statistical method (eq 3) has no  practical 

limitation of use, but accurate SD estimates cannot be acquired, until  a large 

number of repeated experiments are conducted. The FUMI theory and statistical 

method are complimentary in analytical chemistry.  

Assumptions and principles on which the FUMI theory is constructed are:.  

1. when a sample concentration is low at or near a DL, the most predominant 

source of measurement errors is background noise in instrumental output ; 

2. an error of an area measurement is the area created by the noise over the 

edge-to-edge domain of a signal; 

3. the noise is modelled on mixed random processes of white noise and the first 

order autoregressive process, AR(1) (one of the Markov processes).  

Therefore, the FUMI theory cannot apply to situations which are beyond the 

above assumptions and principles, e.g. other methods than instrumental analyses,  

quantitative analyses with large sampling errors, etc.   

 In authors’ experience, the FUMI theory is effective for isocratic HPLC, 

gradient HPLC, internal methods of HPLC. GC and GC/MS are future issues.  

 The FUMI theory and statistical method pursue the common goal of a 

population SD, but their means are different. The latter assesses a feature (eq 3) 

of a population from an ensemble of experimental results, called a sample space. 

This ensemble can be constructed only by repeated experiments. In the FUMI 

theory, however, the population feature is  described in terms of a fundamental 

equation (SD = σ(k)), the parameters of which are stochastically estimated  

(parametrized) from noise and signals of instrumental output. That is, a 

measurement SD is directly estimated from the cause of measurement errors 

(noise). Therefore, the FUMI theory can dispense with repeated measurements. 

Of course, it refers to a result from repeated measurements.  
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3.  Limits of detection, quantitation and decision in practice  

A complicated mathematical theory would not be practical without 

convenient software. The parametrization described in subsection 2.2 cannot 

actually be performed as easily as with spreadsheet software. This section takes 

commercial software as a technical tool. Figures 4 to 6 are all exports of the 

software.  

 

3.1 Software for uncertainty of measurements   

TOCO19 (Total Optimization of Chemical Operations) is a piece of 

software for automatically providing SD estimates for signals in a chromatogram. 

Among its output are limits of detection, quantitation and decision and precision 

profiles.  

Figure 3 shows an overview of TOCO19 analyses. First, noise and signals 

are distinguished and secondly, necessary information for the analyses is 

extracted from them and analyzed by the FUMI theory to yield a result of σ(k).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  An overview of TOCO19 

A Chromatogram

Noise Signals

FUMI Theory

Detection Limit, Decision Limit, Quantitation Limit and 
Precision Profile 
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Figure 4 illustrates a chromatogram of organic acids in an HPLC system 

with a UV absorption detector. Here, an object for quantitative analysis is the 

third peak (acetic acid) . The second peak is made up of overlapping peaks: one is 

malic acid and the other is unknown. The blue blocks denote signals 

automatically recognized by TOCO19. The line segments at Y = 0.15 are noise 

regions used by TOCO19 noise analyses and those at Y = 0.1 are signal regions 

eliminated from the noise analyses.  

 

 

 

 

Figure 4  A chromatogram of organic acids in an HPLC system3) 

The signals are (from left) system, malic acid, acetic acid, citric acid and succinic 

acid (10 mg/L each). Observed values are: w = 0.00357, m = 0.00176,  = 0.246.   

 

 

 

 

 

 

 

 

 

 

Figure 5  A histogram of measurement errors (areas created by noise)  
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Figure 5 shows a histogram of  areas (A(k’)) created by noise. The zigzag 

line denotes a distribution of noise areas observed over the noise regions of Fig. 4 

and the smooth line a theoretical line of a normal distribut ion. The observed line 

is in excellent agreement with the theoretical one. This agreement is an evidence 

for successful uncertainty prediction of TOCO19, because the distribution of noise 

areas of Fig. 5 is equivalent to that of measurement errors as long as assumption 

2 of subsection 2.2 holds true. The width, k’, of the noise areas, A(k’), is fixed at 

300 data points and the X-axis of Fig. 5 is standardized according to SD, σ(k’), of 

noise areas. The constant, k’, is used for the noise analyses only and different 

from k of σ(k) which is a width of a target signal. 

 

3.2 Signals for limits of detection, quantitation and decision  

  TOCO19 provides not only numerical values for limits of detection, 

quantitation, but also visual information about them. Figure 6 illustrates S/N 

aspects for the acetic acid peak in the quantitative analysis of Fig. 4. Its signal 

shape is approximated by a Gauss peak (normal distribution). The width, k, of a 

real peak corresponds to ± 3σ of the normal distribution. Noise in the noise 

regions of Fig. 4 is automatically analyzed by TOCO19 algorithms. The limits of 

decision and detection are defined by eqs 1 and 2, but the quantitation limit (QL) 

is regarded as 10y according to the Japanese Pharmacopoeia. The population SD, 

y, of eqs 1 and 2 is replaced with the sample SD, σ(k), evaluated by TOCO19. 

As is well-known, an S/N is a convenient indicator for DLs and QLs. The 

S/Ns shown in Figs. 6A and C are close to the widely adopted values, 3 and 10, 

respectively. It is quite interesting for the distinct methods to yield comparable 

results. The reason is unknown, but will not be accidental.  

Figure 6 shows an averaged signal on noise for the acetic acid peak of Fig. 

4. When analytes of the xD concentration are measured repeatedly, larger and 

smaller peaks than that of Fig. 6A will appear with the same probabilities (50 %) , 

but smaller peaks than Fig. 6B will appear with only 5 % probability (β). On the 

other hand, blank samples will create peaks large than the peak of Fig. 6B with 

5 % probability (α). In other word, the background noise will create a larger 

fluctuation than Fig. 6B with 5 % probability (α).  
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Figure 6  Signals for limits of (A) detection, (B) decision and (C) quantitation  

Concentration of acetic acid: A 1.68 mg/L; B 0.84 mg/L; C 5.10 mg/L. 

A 

B 

C 
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You might think that the signal of Fig. 6B is too small to be a threshold of 

detection. However, five percent (β) is not a probability of success, but that of 

failure. This probability is as high as if you made a mistake once in twenty times 

at work, you would get depressed. Therefore, a decision limit signal is not far 

from noise (no work).  

 

4.  Precision profiles 

A mathematical relationship between a sample concentration and relative 

standard deviation (RSD) of measurements (see Fig. 7), termed precision profiles 

by ISO1) and JIS2), helps survey entire structure of uncertainty in an analytical 

system. In general, the RSD of measurements decreases with increasing sample 

concentrations. At high concentrations, however, the RSD converges to a value 

attributed to other error sources than noise, e.g. volume errors of sample 

solutions injected into an instrument. Needless to say, near a DL, the major factor 

of errors is assumed to be background noise. In the precision profile of Fig. 7, the 

DL (= 1.68 mg/L) and QL (= 5.10 mg/L) can be spotted at the concentrations which 

correspond to 30 % and 10 % RSDs of  measurements, respectively (see below).  

 

 

 

Figure 7  A precision profile for acetic acid in the analysis of Fig. 4  
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For the acetic acid peak of Fig. 4 (10 mg/L), RSDs of measurements 

estimated by TOCO19 and repeated experiments were observed to be 6.5 % (n = 1) 

and 6.4 % (n = 6), respectively (not shown). The 95 % confidence intervals of the 

latter range from 4.0 to 15.9 % RSD and contain the former RSD value. This 

statistical test indicates that TOCO19 can apply to the HPLC analyses with 

ultraviolet detection.  

 Equation 2 can be rewritten as2)  

 

y / yD = 1 / 3.3 = 30 %        (4) 

 

Taking into account that an SD divided by an average is an RSD, we can see that 

when samples of the DL concentration are measured repeatedly, the RSD of 

measurements is 30 %. In the similar manner, 10 % RSD can be derived for 

samples of the QL concentration (QL = 10y).  

 Details of basic mathematical equations and concepts of TOCO19 can be 

found in refs. 3 and 4. 
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